
Problem Analysis
Disclaimer: This is an analysis of some possible ways to solve the problems of The 2022 ICPC
Asia Jakarta Regional Contest. Since the purpose of this analysis is mainly to give the general
idea to solve each problem, we left several (implementation) details in the discussion for reader’s
exercise. If some of the terminology or algorithms mentioned below are not familiar to you, your
favorite search engine should be able to help.

Problem Title Problem Author

A Storing Eggs Ammar Fathin Sabili

B Magical Barrier Wiwit Rifa’i

C Nightmare Brother Suhendry Effendy

D City Hall Muhammad Ayaz Dzulfikar

E Substring Sort Muhammad Ayaz Dzulfikar

F Doubled GCD Rafael Herman Yosef

G The Only Mode Suhendry Effendy

H Grid Game Prabowo Djonatan

I Contingency Plan Lie, Maximilianus Maria Kolbe

J Sharing Bread Prabowo Djonatan

K Short Function Muhammad Ayaz Dzulfikar

L Increase the Toll Fees Rafael Herman Yosef

M Game Show Ammar Fathin Sabili

Analysis Authors

Lie, Maximilianus Maria Kolbe

Prabowo Djonatan

Rafael Herman Yosef

Suhendry Effendy

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 1

A. Storing Eggs

Let f(c, k, b1, b2) be the maximum distance between two closest eggs where the available columns
are from column c to N , the remaining number of eggs is k, the egg-state of column c − 1 is b1,
and the egg-state of column c − 2 is b2. The egg-state is a bitwise (3 bits) representing the eggs’
existence on the respective column. The answer to the problem is f(1,K, 0, 0).

To compute f(c, k, b1, b2), we need to find a column d where c ≤ d ≤ N such that putting eggs in
such a column is optimal. Note that there are also 23 − 1 ways of putting eggs in a column. The
distance between the new eggs and the closest existing eggs is only determined by the distance
to column c, the egg-state for column c− 1 (i.e. b1), and the egg-state for column c− 2 (i.e b2)—on
why we need b2 is left for the reader to figure out. Notice that b1 is always at least 1 (as it represents
the egg-state of the last column we put eggs) while b2 can be 0.

With a dynamic programming approach, the total memory complexity is O(NK), and the total time
complexity is O(N2K), with all constant factors removed from the notation.

However, a plain implementation of this idea most likely will get a time limit exceeded verdict, unless
done very efficiently. As you might have noticed, the discussed approach has a large constant
factor, thus, any speed-up might be necessary to get accepted.

We observe 2 useful optimization/pruning: stop the state computation when there is not enough
slot available to put all k eggs, stop the state computation when it cannot produce a better solution.
Alternatively, we can reduce the state size by doing further analysis. Observe that the middle row
state of b2 on column c− 2 does not matter as any egg on column c− 1 will have a shorter distance
to the new egg. Thus, we can reduce the egg-state of b2 from 3 bits into 2 bits (only consider the
first and third row).

B. Magical Barrier

In this analysis, we refer to a power source as a point and a magical barrier as a segment.

For each segment that connects point A and point B, let us instead count the number of segments
that do not intersect segment AB.

First, for each segment AB, we will try to separate other points according to the line AB. Let
CCW[A,B] be all P such that the vector −→AP is in the counter-clockwise direction from −−→

AB. More
formally, CCW[A,B] := {P : (

−−→
AB ×

−→
AP) · (0, 0, 1) > 0}. Then, each point P (other than A and

B) is part of either CCW[A,B] or CCW[B,A]. All the values of CCW[A,B] can be computed in
O(N2 logN) using radial line sweep.

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 2

Segments that neither touch nor intersect segment AB can be categorized into four types:

1. both points connected by the segment is part of CCW[A,B];

2. both points connected by the segment is part of CCW[B,A];

3. the segment intersects ray −→
AB but not segment AB; and

4. the segment intersects ray −→
BA but not segment AB.

The number of segments of type 1 and 4 can be obtained by computing:

S(A,B) :=
∑

P∈CCW[A,B]

|CCW[A,P]|

while the number of segments of type 2 and 3 is:

S(B,A) :=
∑

P∈CCW[B,A]

|CCW[B,P]|

For each point A, computing S(A,B) for all point B can be done in O(N logN) using radial line
sweep. Hence, all the values of S(A,B) can be computed in O(N2 logN).

Once all the calculations above are done, we can find the number of segments that intersects AB

by computing (N−2)(N−3)
2 − S(A,B)− S(B,A). Thus, we only need to find the maximum value for

all A and B.

C. Nightmare Brother

As the constraints are quite small, we can simply simulate for each hint i to find what the resulting
string will be if hint i is false. Constructing such a resulting string for each simulation can be done
in O(NM). There are many ways to maintain the number of unique outputs, e,g., with std::set

container. Also, don’t forget the case when there is no false hint.

D. City Hall

Let adj(i) be the set of intersections that are directly connected to intersection i. Also, let distSi be
the minimum amount of energy needed to go from intersection S to intersection i, and distTi be the
minimum amount of energy needed to go from intersection T to intersection i. The single source
shortest path algorithm can be used to compute distSi and distTi for all i starting from intersection
S and T , respectively.

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 3

There are 3 possible scenarios.

1. The altitude to be changed is at intersection S

2. The altitude to be changed is at intersection T

3. The altitude to be changed is at intersection i where i ̸= S and i ̸= T

In the 1st scenario, we simply change HS into one of Hi where i ∈ adj(S) so that the energy
required to traverse the road connecting S and its direct neighbor is 0. The minimum amount of
energy needed in this case is equal to distTj where j ∈ adj(S). Using a similar approach, we can
find the minimum amount of energy for the 2nd scenario as well.

As for the 3rd scenario, let f(i) be the minimum amount of energy from S to T if we change Hi.
The following formula represents f(i),

f(i) = min
u,v∈adj(i)

{distSu + distTv + d(u, v)}

d(u, v) = (Hu − opt(u, v))2 + (Hv − opt(u, v))2

where opt(u, v) represents the new altitude to minimize d(u, v). It turns out that the optimal opt(u, v)
is equal to H(u)+H(v)

2 (proof omitted).

Substituting opt(u, v) with the optimal one, we can rewrite f(i) into

f(i) = min
u,v∈adj(i)

{
distSu + distTv +

H2
u

2
+

H2
v

2
−Hu ·Hv

}
Solving this formula for each i with a direct approach (testing all pairs u, v ∈ adj(i)) will get you a
time limit exceeded verdict as it has a time complexity of O(M2). By rearranging the formula into

f(i) = min
u∈adj(i)

{
distSu +

H2
u

2
+ min

v∈adj(i)

{
distTv +

H2
v

2
−Hu ·Hv

}}
, we can see that distTv +

H2
v
2 − Hu · Hv is a linear equation that depends on Hu. Therefore, we

can utilize the convex hull trick or Li Chao Tree to find the optimum i and its new Hi value. The
time complexity for the 3rd scenario depends on what trick you employ, e.g., O(M logM) with the
convex hull trick.

E. Substring Sort

This problem can be solved with the square root decomposition technique. For the sake of sim-
plicity, assume N is a square number (i.e.

√
N is an integer), and let k be

√
N .

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 4

First, we need to create k partitions (blocks) for each string A, B, and C where the length of each
string in each block is also k. Let a be the partitions for A. The notation ai represents the ith block
of A that contains the string A(i−1)·k+1...Ai·k. Similarly, b for B and c for C.

The main idea is to represent each block (of size k) with a single integer that can easily be com-
pared against other strings at the same block index. Computing, comparing, and maintaining these
integers can be done in O(

√
N) for each index i.

For each index i, let rai, rbi, and rci be the rank of ai, bi, and ci, respectively. For example, let
ai = MMM, bi = DDD, and ci = RRR; the sorted order is bi < ai < ci, thus, rai = 2, rbi = 1, and
rci = 3. These values can be computed in O(

√
N) for each index i.

For each query ⟨l, r⟩, we aim to represent the substring of length O(N) with a shorter object (we’ll
use a vector of integers) of length O(

√
N). The intended substring in each query contains at most

3 parts with respect to the partitions: the head (zero or more characters), the body (zero or more
blocks), and the tail (zero or more characters). For the body, we can represent each block with
its rank. For each character in the head and tail, we can simply use the characters themselves
(represent each character with an integer, e.g., `z' = 25). As the size of each of those 3 parts is
O(

√
N), the copy operation can be done in O(

√
N).

Sorting 3 items of O(
√
N) in size can be done in O(

√
N).

Then, we need to maintain each ai, bi, ci, rai, rbi, and rci according to their new order in the
replace operation (perform swaps where necessary). For the head and tail parts, we can swap
the characters between strings manually. For each query, there will be at most two blocks for each
string that are partially updated (the head and the tail); we need to recompute the rank for this block
index. Therefore, the replace operation can be done in O(

√
N).

This idea solves all the procedures in O(
√
N) per query, thus, the total time complexity is O(Q

√
N).

F. Doubled GCD

Performing all N − 1 moves is similar to finding the greatest common divisor (GCD) of all Ai;
however, there might be additional factors of 2 due to the moves (doubled the GCD).

First, let’s extract GCD(A) from Ai. Let Bi be Ai/GCD(A), and let Ci be the number of factors
2 in Bi, e.g., Bi = 40 = 23 × 5 → Ci = 3. Choosing two cards i and j will cause the number of
factors 2 in the resulting new card to be min(Ci +Cj)+ 1. Therefore, to get the maximum possible
number of factors 2 in the last card, we can greedily pair two indices i and j that have the lowest
number of factors 2, i.e. Ci and Cj are the smallest among C. Let the number of factors 2 in the

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 5

last card be P , then the output is GCD(A)× P .

G. The Only Mode

In this analysis, we only consider the part where the pivot x = 0; any other x can be done similarly.

Firstly, construct a partial sum pk(m) thas represents the number of occurences of k in A1..m for
each k = {0, 1, 2, 3}. Then, let fk(m) be p0(m)− pk(m) for k = {1, 2, 3}. Notice that fk(m) will be
positive if there are more 0 in A1..m than k, negative if it’s the other way around, and zero if they’re
equal. As fk(m) is also a partial sum, then we can find such a sum on a specific range [L,R], i.e.
AL..R, with fk(R)− fk(L− 1).

To find a range where 0 appears stricly more often than any other k, we have to find a range [L,R]

where fk(R) − fk(L − 1) > 0 for all k = {1, 2, 3}. This can be done with the help of a geometric
data structure that supports point updates and range queries.

Represent each tuple ⟨f1(m), f2(m), f3(m)⟩ as a point in a 3-dimensional plane. Process each point
one by one fromR = 1 toN . For each indexR, we need to find a point ⟨f1(L−1), f2(L−1), f3(L−1)⟩
that are strictly on the left (smaller on all dimensions) of ⟨f1(R), f2(R), f3(R)⟩ where L = 1..R− 1.

But, hold on! Unless there is a 3-dimensional data structure that can handle those queries efficiently
enough, we still need to speed up this solution.

Luckily, we can discard one of the dimensions. Instead of processing R from 1 to N , we can process
R from i such that f1(i) is the smallest until the largest. By doing so, we don’t need to consider
f1(m) anymore in the search as the points that have been processed do not have a larger f1(m);
though, we still need to be careful when f1(m) is equal. Therefore, we only need a 2-dimensional
data structure, e.g., a 2d segment tree, or a simpler 2d BIT (since all the queries are half-plane in
each dimension).

H. Grid Game

Let’s call a cell to be dead-end if the cell is passable and both the right side and bottom side of the
cell are impassable (or outside of the grid).

Find the xor of all the integers written on the dead-end cells. If the resulting xor is a positive integer,
the first player will win. Otherwise, the second player will win.

Let’s prove the statements above.

Any path taken by a player starting from any position will always end on a dead-end cell.

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 6

Proof. Suppose the player doesn’t end his turn on a dead-end cell. That means there still exists
a passable cell that is either to the right or the bottom of the end’s cell, hence the player must still
make a move, a contradiction.

Moreover, the last cell passed by a player on his turn is the only dead-end cell that is passed by
the player on that turn.

Proof. Suppose there exists another cell on the path that is a dead-end cell, then that player couldn’t
make any more moves on that cell because neither the right nor the bottom side of the cell is
passable, a contradiction.

Also, notice that each integer on the path passed by a player on his turn is always replaced by
a different integer. This is because the integer x at the starting cell and the chosen integer y are
different, hence x⊕ y is a positive integer, and any integer that is xor-ed with a positive integer will
yield a different value.

Therefore, the losing player will always replace an integer from exactly one dead-end cell with a
different integer. The winning player can treat the integers on the dead-end cells as a standard nim
game, and apply the same winning nim game strategy by starting his move on the dead-end cells.

I. Contingency Plan

There are several solutions that can construct a valid contingency plan. We discuss one of the
solutions.

First, any star graph does not have a valid plan. The following construction algorithm shows that
all trees other than a star graph have a solution.

Start by choosing an arbitrary node as the root of the tree; let node r be the root. Let Ci(r) be
the ith child of r, sorted by the edge number in the given tree. For all nodes other than r and its
children, it can be connected to r immediately. Then, for the children of r, Ci(r) can be connected
to Ci+1(r), except for the last child of r; let c be this node. Finally, for node c, connect it to any node
that satisfies all the following requirements.

• It cannot be r and the children of c

• It cannot be the other children of r

• It must already be connected by a backup cable

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 7

If such a node exists, then connect c to that node. If such a node does not exist, then the root must
be changed. Note that selecting the children of r as the new root might result in the same problem.
However, any children of c can be selected as the new root, and it is guaranteed for this new root
to have a valid plan (it can be proven with contradiction).

This construction also implies that if c has any child, then a valid plan must exist. The other cases
are either when the original root r already has a valid plan, or the tree is a star graph that has no
valid plan.

J. Sharing Bread

Consider that we have N+1 toasters instead, and they are arranged in a circular manner (i.e. when
a person looking at toaster N + 1 has no bread, the person will continue to search from toaster 1).
After all M people have taken the bread, there will be exactly N −M + 1 toasters left with bread.

The answer for the original problem will be equivalent to the number of ways to take the bread
on the circular-arranged toaster and toaster N + 1 is left with bread. Now, the number of starting
sequences in this circular setting is (N +1)M . Out of those, N−M+1

N+1 of them left toaster N +1 with
bread. The ratio is proportional to the number of bread left because there exists a way to partition
all the starting sequences into classes such that each class has N − M + 1 starting sequences
that left toaster N + 1 with bread and M starting sequences that left toaster N + 1 with no bread.
One such partitioning is for (a1 + i, a2 + i, . . . , aM + i) for all 1 ≤ i ≤ N + 1 belonging to the same
class.

Therefore, the final answer is (N −M + 1)(N + 1)M−1.

K. Short Function

First, observe that the result for Bi is (Ai×Ai+1× ...×A(i+2K−1)modN)modM where M is a prime
number 998 244 353. We can split this answer into two components.

1. The repeating part: ((
∏

Ai)
⌊2K/N⌋)modM

2. The tail: (Ai ×Ai+1 × ...×A(i+(2K modN)−1)modN)modM

The first part will be the same for all i, thus, we only need to compute it once. It can be calculated by
utilizing Fermat Little Theorem so the first part becomes ((

∏
Ai)

⌊2K/N⌋mod (M−1))modM . On the
other hand, the second part can be calculated with the help of prefix/suffix multiplication. Finally,
to get the answer for Bi, simply multiply both parts and modulo with M .

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 8

Another challenge in this problem is how to compute ⌊2K/N⌋mod (M − 1). One way to achieve
this is by representing 2 with a pair ⟨p, q⟩ where 2 = p×N+qmodN . This way, we split the quotient
and the remainder when divided by N . Observe that to perform a floor operation on ⟨p, q⟩, we only
need to take the quotient p. Then, to get 2K mod (M −1), simply do modular binary exponentiation
on ⟨p, q⟩ with K as its power. When we multiply ⟨p1, q1⟩ with ⟨p2, q2⟩, don’t forget to maintain the
quotient/remainder pair with respect to N . Let the result be ⟨p′, q′⟩, then ⌊2K/N⌋mod (M − 1) is
equal to p′.

L. Increase the Toll Fees

First, we can use MST (Minimum Spanning Tree) algorithm to determine the set of toll roads that
have been used before the price increase. To check if the King’s plan is impossible, we can do
MST algorithm for the second time without including the toll roads from the first MST. If there are
some cities that are not connected after executing MST algorithm for the second time, the result is
-1.

The minimum total increase can only be obtained if we only increase the fees from the set of toll
roads from the first MST. For toll road i that connects city Ui to Vi in the first MST, we can change its
fee with d(Ui, Vi) + 1 where d(u, v) represents the maximum toll fee from path u to v in the second
MST.

To find the d(u, v) efficiently, we can use the lowest common ancestor (LCA) algorithm. Hence, this
problem can be solved in O(NlogN).

M. Game Show

The round is flawed if there is a cycle (starts and ends at region i) such that the penalty is negative.
For each round, the contestant can go to region i and use this cycle to reduce the penalty infinitely
many times.

To check if there is a cycle with negative penalty, at least one of these conditions must be satisfied.

1. Sum of all Ai is negative

2. Sum of all Bi is negative

3. There exists a region i such that Ai + Bi is negative

If Ax..y + Bx..y < 0, then there is a region k such that Ak + Bk is negative. Therefore, checking if
there exists an integer i such that Ai +Bi < 0 is sufficient.

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 9

If the round is not flawed, then the minimum penalty from region s to t can be obtained simply by
using path A only, i.e. As+As+1+ ...+At−1 or path B only, i.e. Bs−1+Bs−2+ ...+Bt. But a direct
implementation will get a time limit exceeded verdict. We can speed up the process by using the
prefix sum for A and B. Hence, we can calculate the penalty of each round in O(1). Also, don’t
forget to handle the circular setting.

The 2022 ICPC Asia Jakarta Regional Contest – Problem Analysis 10

